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INVARIANT SOLUTIONS OF THE EQUATION OF NON-STEADY LAMINAR FLOW OF A 

NON-NEWTONIAN FLUID IN PIPES* 

R.N. BAKHTIZIN and R.K. MDKHAMEDSHIN 

A method of obtaining particular solutions of the equations of the 
laminar flow of non-Newtonian fluids in pipes based on a group-theoretic 
analysis of differential equations is considered. Invariant solutions 
are given for point and tangential transformations satisfying the 
natural boundary conditions. 

1. The problem of the non-steady laminar flow of a viscous incompressible fluid along 
a cylindrical pipe can be formulated as the following equation for the rate of flow W: 

W1 = Y (W,., + l%JT)i~ p-If(t) 

where -adpiaz = f(t) is the given law of variation in the pressure drop and P,Y are the 
density and kinematic viscosity of the fluid, respectively. The above equation has studied 
in many publications /l-3/ for various dependences of the pressure drop on time. 

For a fluid with non-Newtonian properties /4/ the analogous problem is formulated as 
follows: 

WI = W (WY) WV + r-14, (I%) + 0-V (t) (1.1) 

where @ is a function characterizing the law of friction of the non-Newtonian fluid. 
Making the substitution 

t 
w = u+ + s f (t) dt 

0 

we reduce Eq.(l.l) to the equation 
Il* = 0' (I&) UII + r-W (1+) (1.2) 

The aim of the present paper is to obtain certain particular solutions of Eq.(1.2), and 
hence of (1.1) by studying its group-theoretic properties /St. 

2. In the case of an arbitrary relation 0= 0(+) Eq.(1.2) has a three-dimensional 
algebra L, of infinitesimal operators with the basis x, = alat, x, = alaa, corresponding to 
the displacements in t and u, and x, = raiar 4. ataiat + d/au corresponding to the selfmodelling 
solution. 

The group-theoretic classification of Eq.(1.2) relative to the function a, apart from 
an equivalence transformation /5/, leads to the following result. Extension of the algebra 
L, can occur only for the following specialized 0((n,) (the cases WSO,@'S 1 are excluded): 

1) Q, (IL,)= exp (L+); additional basis operator 
x, = ra/ar + (U + zr) a/au 

2) 4, (u,) = uyh; additional basis operator 

x6 = (h - 1) ralar + (a. + i) uaiau 

3) d, (u,)-= ur-l. We obtain an infinitely dimensional group containing, in addition to 
x,, x,. x,, x, (when h= --1), the operators 

x,, = Waist + r (~2 - 2t) alar .I 8utdiarr 

x: = ruaiar + btaian, x, = or-Ialar 

where the function w satisfies the equation % + %,i = 0. 
Let us consider the invariant solutions of Eq.(1.2) connected with the appearance of 

additional symmetries and corresponding to the natural boundary conditions 

w Ir=a = 0, WI IV_=" = 0 (2.1) 

where R is the pipe radius (henceforth we shall assume that R = 1). 
Let us consider the invariant solution for the operator 
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x, + ax, = 6ralar + 2atalat f oualau 

6=h+-a--l, o=?.+a+i 

When a=0 , we obtain the solution in the form 

w = fi (1 - P) (to - t)l’(l-h), p = (y (3h - 1#'(1-A), y = (I + l)/(h - 1) 

which corresponds to f(t) = p (h- I)-’ (to - t)-i’(h-1)9 satisfies the conditions (2.1) when J.>l, 
and describes a condition with a constraint. 

When a#O, we can write the invariant solution in the form 

u = +Jlc$ (k), 5 = ,(-'/*0/a 

where 'p satisfies the corresponding differential equation. When a--h-1, the equation 
can be integrated in quadratures, and the solution satisfying the conditions (2.1) (when 
A< 0) will be written in the form 

and will correspond to the condition 

When Q (G) = +-'r we can use the substitution .z=+ to reduce Eq.(1.2) to the form 

"t = (I/%), (2.2) 

which can be transformed, with help of the substitution zl= u,u~= z, to a linear equation of 
heat conduction /6, 7/. However, it is not easy to obtain from the solution of this equation, 
the solutions of Eq.tl.1) satisfying the conditions (2.1) and to study them. 

If we introduce the function V= ~1~. then differentiating (2.2) with respect to x we 
obtain for this function the equation which has a selfsimilar solution (function 'p has a 
parametric representation): 

" = Vp1/2k(p (In E), E = It-“. 
8 

1 (F'(s)- I)& 
'P=,_F(r)* E = axp s (s--F (s))(sF(s)-F'(S)- 1) 

6, 

(2.3) 

Then, using the inequality (2.3) we can represent the solution of Eq.(l.l) satisfying 
conditions (2.1), in the 

The solution of Eq. ( 

form 

1.2) corresponding to (2.4) is no longer invariant under point . ._. 
transformation, but will be invariant under some tangential transformation /6/. 

3. We will give an example of the construction of some tangential symmetries for Eq.(1.2) 
discussed in /a/. 

Differentiating Eq.(1.2) and introducing a new function V= u?. we obtain the equation 

ut = 0-l (fi (v))Ar (3.0 

The group-theoretic classification of Eq.(3.1) relative to point transformations yields 
the following result. If Q, (v) is any function, then Eq.(3.1) will have a two-dimensional 
algebra with the basis Y,,= alar, Y, = atalat + relar. The algebra can be extended under the 
following specializations of Q, (v) (the case of @'SO, a'=_-1 is excluded): 

1) Q, (v) - r”; additional operator 
Y, = ralar + 2alav 

2) Q, (u) = uh; additional operator 

y, = (h - t) ralar + 2ualav 
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3) Q, (0) = u-'/e; additional operators 

Y,,Y, = Palar- wuatau 

4) Q, (v) = u-1; additional operators 

Y,, Y, = r-Ialar + ur-aalau 

The ooerators YI, . . . . l’s associate for Eq.(1.2) the operators of tangential symmetry, 
and make it possible to construct the corresponding invariant 

In particular, when d, (I+) = .;"a , the invariant solution 
associated with Y,+S/sY,+YI. can be written in the form 

where F(z) satisfies the ordinary differential equation 

2#"' -; 6zF' + *SF-VsF’ + 18F = 0 

while the following solution corresponds to the operator y,+ Y,: 

solutions. 
corresponding to the operator 

(3.2) 

where G(Z) satisfies the equation 

42=G"+ 426' + ~B=G-~G' - G = 0 (3.3) 

Introducing new functions 
F (z) = z-“p (In z), G (8) = z%& (In z) 

in Eqs.(3.2) and (3.3), we can reduce their order and study them using the methods of the 
analytic theory of differential equations. 

It should be noted that Eq.(1.2) is used in describing the plane-radial filtration of 
non-Newtonian media /9/. This implies that the results obtained here may also be interpreted 
from the filtration point of view. 
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